Development of a Representative Volume Element of Lithium-ion Batteries for Thermo-mechanical Integrity

نویسندگان

  • RICHARD LEE
  • Tomasz Wierzbicki
چکیده

The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers is one of test and build, an approach that nearly every other industry has long abandoned. A computational model is required to reduce the expensive build-test cycle and allow safer, cheaper batteries to be built. The path to building this computational model will involve many different processes and one of those processes dictates the homogenizing of the interior of the battery casing by treating the interior as a homogenized Representative Volume Element. This study explains this process and outlines a procedure for the development of this particular model for both cylindrical and prismatic / pouch cells. Over twenty different mechanical tests were performed on fully-discharged cylindrical and pouched / prismatic lithium-ion batteries, in casings and without casings under multiple loading conditions. These included lateral indentation by a rod, axial compression, through-thickness compression, in-plane unconfined compression, in-plane confined compression, hemispherical punch indentation and three-point bending. Extensive testing on the battery cell and jelly roll of 18650 lithium ion cylindrical cell, combined with the use of analytical solutions to estimate material properties of the cell, yielded the development of a finite element model. It was found that the suitably calibrated model of high density compressible foam provided a very good prediction of the crash behavior of cylindrical battery cell subjected to high intensity lateral and axial loads. For the prismatic / pouch cell, the measured load-displacement data allowed calculation of the individual compression stress-strain curves for the separator, the active anode and cathode materials. The average stress-volumetric strain relation was derived from averaging the properties of individual layers as well as from direct measurement on the bare cell. This information was then used as an input to the FE model of the cell. The model was composed of shell elements representing the Al and Cu foil and solid elements for the active material with a binder lumped together with the separator. Very good correlation was obtained between LS-Dyna numerical simulation and test results for the through-thickness compression, punch indentation and confined compression. Closed form solutions were also derived for the latter three problems which helped explain the underlying physics and identified important groups of parameters. It was also demonstrated that a thin Mylar pouch enclosure provided considerable reinforcement and in some …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

Exact Solution for Electro- Thermo- Mechanical Behavior of Composite Cylinder Reinforced by BNNTs under Non- Axisymmetric Thermo- Mechanical Loads

In this research, static stresses analysis of boron nitride nano - tube reinforced composite (BNNTRC) cylinder made of poly - vinylidene fluoride (PVDF) subjected to non - axisymmetric thermo - mechanical loads and applied voltage is developed. The surrounded elastic medium is modelled by Pasternak foundation. Composite structure is modeled based on piezoelectric fiber reinforced composite (PFR...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011